EDEXCEL STATISTICS S2

JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number		Scheme		Marks	
1.	(<i>a</i>)	Continuous uniform (Rectangular) U(-0.5, 0.5)	B1 B1	(2)	
	<i>(b)</i>	P(error within 0. 2 cm) = $2 \times 0.2 = 0.4$	M1 A1	(2)	
	(<i>c</i>)	P(both within 2 cm) = $0.4^2 = 0.16$	M1 A1	(2)	
			(6 marks)		
2.	(<i>a</i>)	$X \sim \text{Po}(7)$	B1		
		$P(X \le 2) = 0.0296$	B1		
		$P(X \ge 13) = 1 - 0.9370 = 0.0270$	M1 A1		
		Critical region is $(X \le 2) \cup (X \ge 13)$	A1	(5)	
	<i>(b)</i>	Significance level = $0.0296 + 0.0270 = 0.0566$	B1	(1)	
	(<i>c</i>)	$x = 5$ is not the critical region \Rightarrow insufficient evidence to reject H ₀	M1 A1	(2)	
			(8 marks)		
3.	(<i>a</i>)	Weeds grow independently, singly, randomly and at a constant rate (weeds/m ²) any 2	B1 B1	(2)	
	<i>(b)</i>	Let <i>X</i> represent the number of weeds/ m^2			
		$X \sim \text{Po}(0.7)$, so in 4 m ² , $\lambda = 4 \times 0.7 = 2.8$	B1		
		P(Y < 3) = P(Y = 0) + P(Y = 1) + P(Y = 2)	M1		
		$= e^{-2.8} \left(1 + 2.8 + \frac{2.8^2}{2} \right)$	A1		
		= 0.46945	A1	(4)	
	(<i>c</i>)	Let X represent the number of weeds per 100 m^2			
		$X \sim \text{Po}(100 \times 0.7 = 70)$	B1		
		$P(X > 66) \approx P(Y > 66.5)$ where $Y \sim N(70, 70)$	M1 M1 A1		
		$\approx \mathbf{P}\left(Z > \frac{66.5 - 70}{\sqrt{70}}\right)$	M1		
		$\approx P(Z > -0.41833) = 0.6628$	A1	(6)	
			(12 mar)		

PMT

EDEXCEL STATISTICS S2

JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number	Scheme	Marks	
4 . (<i>a</i>)	P(X > 0.7) = 1 - F(0.7) = 0.4267	M1 A1	(2)
(b)	$f(x) = \frac{d}{dx}F(x) = \frac{4}{3} \times 2x - \frac{4x^2}{3}$	M1	
	$= \frac{4x}{3}(2 - x^2) \text{ for } 0 \le x \le 1$	A1	(2)
(c)	$E(X) = \int_0^1 \frac{4}{3} (2x^2 - x^4) dx = \left[\frac{4}{3} \left(\frac{2x^3}{3} - \frac{x^5}{5}\right)\right]_0^1$	M1 A1	
	$=\frac{28}{45}=0.622$	A1	
	Var (X) = $\int_0^1 \frac{4}{3} (2x^3 - x^5) dx - \left(\frac{28}{45}\right)^2$	M1	
	$= \left[\frac{4}{3}\left(\frac{2x^4}{4} - \frac{x^6}{6}\right)\right]_0^1 - \left(\frac{28}{45}\right)^2$	A1	
	$=\frac{116}{2025}=0.05728$	A1	(6)
(<i>d</i>)	$f(x) = \frac{4}{3}(2 - 3x^2) = 0$	M1	
	\Rightarrow mode = $\sqrt{\frac{2}{3}} = 0.816496$	A1	
	skewness = $\frac{\frac{28}{45} - \sqrt{\frac{2}{3}}}{\sqrt{\frac{116}{2025}}} = -0.81170$	M1 A1	(4)
		(14 ma	rks)

EDEXCEL STATISTICS S2

JANUARY 2003 PROVISIONAL MARK SCHEME

Questior Number	Neneme	Mar	arks	
5 . (<i>a</i>	Let <i>X</i> represent the number of double yolks in a box of eggs	B1		
	$\therefore X \sim B(12, 0.05)$	B1		
	$P(X = 1) = P(X \le 1) - P(X \le 0) = 0.8816 - 0.5404 = 0.3412$	M1 A1	(3)	
(b	$P(X > 3) = 1 - P(X \le 3) = 1 - 0.9978 = 0.0022$	M1 A1	(2)	
(<i>c</i>	P(only 2) = $C_2^3 (0.3412)^2 (0.6588)^2$	M1 A1		
	= 0.230087	A1	(3)	
(a) Let <i>X</i> represent the number of double yolks in 10 dozen eggs			
	$\therefore X \sim B(120, 0.05) \Longrightarrow X = Po(6)$	B1		
	$P(X \ge 9) = 1 - P(X \le 8) = 1 - 0.8472$	M1 A1		
	= 0.1528	A1		
(6) Let X represent the weight of an egg $\therefore W \sim N(65, 2.4^2)$	M1		
	$P(X > 68) = P\left(Z > \frac{68 - 65}{2.4}\right)$	A1		
	= P(Z > 1.25)	A1		
	= 0.1056	A1	(3)	
		(15	marks)	

PMT

PMT

EDEXCEL STATISTICS S2

JANUARY 2003 PROVISIONAL MARK SCHEME

Question Number		Scheme		Marks	
6.	<i>(a)</i>	All subscribers to the magazine	B1	(1)	
	<i>(b)</i>	A list of all members that had paid their subscriptions	B1	(1)	
	(<i>c</i>)	Members who have paid	B1	(1)	
	<i>(d)</i>	Advantage: total accuracy	B1		
		Disadvantage: time consyming to obtain data and analyse it	B1	(2)	
	(<i>e</i>)	Let X represent the number agreeing to change the name			
		$\therefore X \sim B(25, 0.4)$	B1		
		$P(X = 10) = P(X \le 10) - P(X \le 9) = 0.1612$	M1 A1	(3)	
	(f)	$H_0: p = 0.40, H_1: p < 0.40$	B1, B1		
		$P(X \le 6) = 0.0736 > 0.05 \Rightarrow \text{not significant}$	M1 A1		
		No reason to reject H_0 and conclude % is less than the editor believes	A1	(5)	
	(<i>g</i>)	Let <i>X</i> represent the number agreeing to change the name $\therefore X \sim B(200, 0.4)$			
		$P(71 \le X < 83) \approx P(70.5 \le Y < 82.5)$ where $Y \sim N(80, 48)$	B1 B1		
		$\approx \mathbf{P}\left(\frac{70.5 - 80}{\sqrt{48}} \le X < \frac{82.5 - 80}{\sqrt{48}}\right)$	M1 M1		
		$\approx P(-1.37 \le X < 0.36)$	A1 A1		
		= 0.5533	A1	(7)	
			(20 marks)		